Glucan phosphate attenuates cardiac dysfunction and inhibits cardiac MIF expression and apoptosis in septic mice.

نویسندگان

  • Tuanzhu Ha
  • Fang Hua
  • Daniel Grant
  • Yeling Xia
  • Jing Ma
  • Xiang Gao
  • Jim Kelley
  • David L Williams
  • John Kalbfleisch
  • I William Browder
  • Race L Kao
  • Chuanfu Li
چکیده

Myocardial dysfunction is a major consequence of septic shock and contributes to the high mortality of sepsis. We have previously reported that glucan phosphate (GP) significantly increased survival in a murine model of cecal ligation and puncture (CLP)-induced sepsis. In the present study, we examined the effect of GP on cardiac dysfunction in CLP-induced septic mice. GP was administered to ICR/HSD mice 1 h before induction of CLP. Sham surgically operated mice served as control. Cardiac function was significantly decreased 6 h after CLP-induced sepsis compared with sham control. In contrast, GP administration prevented CLP-induced cardiac dysfunction. Macrophage migration inhibitory factor (MIF) has been implicated as a major factor in cardiomyocyte apoptosis and cardiac dysfunction during septic shock. CLP increased myocardial MIF expression by 88.3% (P < 0.05) and cardiomyocyte apoptosis by 7.8-fold (P < 0.05) compared with sham control. GP administration, however, prevented CLP-increased MIF expression and decreased cardiomyocyte apoptosis by 51.2% (P < 0.05) compared with untreated CLP mice. GP also prevented sepsis-caused decreases in phospho-Akt, phospho-GSK-3beta, and Bcl-2 levels in the myocardium of septic mice. These data suggest that GP treatment attenuates cardiovascular dysfunction in fulminating sepsis. GP administration also activates the phosphoinositide 3-kinase/Akt pathway, decreases myocardial MIF expression, and reduces cardiomyocyte apoptosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exercise training attenuates diabetes-induced cardiac injury through increasing miR-133a and improving pro-apoptosis/anti-apoptosis balance in ovariectomized rats

Objective(s): The useful and effective role of exercise program to prevent cardiac tissue apoptosis and fibrosis in ovariectomized type 2 diabetic (T2DM) rats (OVR.D) is well known. The current study aimed to investigate the simultaneous effects of T2DM and swimming plan on the expression of some apoptotic, anti-apoptotic biomarkers and glycogen changes in the cardiac ...

متن کامل

Endotoxin-induced myocardial dysfunction: effects of macrophage migration inhibitory factor neutralization.

The pathophysiology of sepsis-induced myocardial dysfunction still remains controversial. Macrophage migration inhibitory factor (MIF) has recently been identified as a cardiac-derived myocardial depressant factor in septic shock. Putative mechanisms by which MIF affects cardiac function are unknown. In an investigation of possible mechanisms of action, a rat model of endotoxin toxicity was des...

متن کامل

Glucan phosphate attenuates myocardial HMGB1 translocation in severe sepsis through inhibiting NF-κB activation.

Myocardial dysfunction is a major consequence of septic shock and contributes to the high mortality of sepsis. High-mobility group box 1 (HMGB1) serves as a late mediator of lethality in sepsis. We have reported that glucan phosphate (GP) attenuates cardiac dysfunction and increases survival in cecal ligation and puncture (CLP)-induced septic mice. In the present study, we examined the effect o...

متن کامل

MicroRNA-208a Silencing Attenuates Doxorubicin Induced Myocyte Apoptosis and Cardiac Dysfunction

AIMS GATA4 depletion is a distinct mechanism by which doxorubicin leads to cardiomyocyte apoptosis, and preservation of GATA4 mitigates doxorubicin induced myocyte apoptosis and cardiac dysfunction. We investigated a novel approach of attenuating doxorubicin induced cardiac toxicity by silencing miR-208a, a heart specific microRNA known to target GATA4. METHODS AND RESULTS Eight-week-old fema...

متن کامل

Brain-Derived Neurotrophic Factor Attenuates Septic Myocardial Dysfunction via eNOS/NO Pathway in Rats

Sepsis-induced myocardial dysfunction increases mortality in sepsis, yet the underlying mechanism is unclear. Brain-derived neurotrophic factor (BDNF) has been found to enhance cardiomyocyte function, but whether BDNF has a beneficial effect against septic myocardial dysfunction is unknown. Septic shock was induced by cecal ligation and puncture (CLP). BDNF was expressed in primary cardiomyocyt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Heart and circulatory physiology

دوره 291 4  شماره 

صفحات  -

تاریخ انتشار 2006